Metrics that Learn Relevance

نویسندگان

  • Samuel Kaski
  • Janne Sinkkonen
چکیده

We introduce an algorithm for learning a local metric to a continuous input space that measures distances in terms of relevance to the processing task. The relevance is defined as local changes in discrete auxiliary information, which may be for example the class of the data items, an index of performance, or a contextual input. A set of neurons first learns representations that maximize the mutual information between their outputs and the random variable representing the auxiliary information. The implicit knowledge gained about relevance is then transformed into a new metric of the input space that measures the change in the auxiliary information in the sense of local approximations to the Kullback-Leibler divergence. The new metric can be used in further processing by other algorithms. It is especially useful in data analysis applications since the distances can be interpreted in terms of the local relevance of the original variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of ranked-based and unranked-based metrics for determining the effectiveness of search engines

Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...

متن کامل

Kernel indexing for relevance feedback image retrieval

Relevance feedback is an attractive approach to developing flexible metrics for content-based retrieval in image and video databases. Large image databases require an index structure in order to reduce nearest neighbor computation. However, flexible metrics can alter an input space in a highly nonlinear fashion, thereby rendering the index structure useless. Few systems have been developed that...

متن کامل

Kernel Indexmg for Relevance Feedback Image Retrieval

Relevance feedback is an attractive approach to developing flexible metrics for content-based retrieval in image and video databases. Large image databases require an index structure in order to reduce nearest neighbor computation. However, flexible metrics can alter an input space in a highly nonlinear fashion, thereby rendering the index structure useless. Few systems have been developed that...

متن کامل

Efficient Adaptation of Structure Metrics in Prototype-Based Classification

More complex data formats and dedicated structure metrics have spurred the development of intuitive machine learning techniques which directly deal with dissimilarity data, such as relational learning vector quantization (RLVQ). The adjustment of metric parameters like relevance weights for basic structural elements constitutes a crucial issue therein, and first methods to automatically learn m...

متن کامل

Integrating Unlabeled Images for Image Retrieval Based on Relevance Feedback

Retrieval techniques based on pure similarity metrics are often suffered from the scales of image features. An alternative approach is to learn a mapping based on queries and relevance feedback by supervised learning. However, the learning is plagued by the insufficiency of labeled training images. Different from most current research in image retrieval, this paper investigates the possibility ...

متن کامل

Survey of graded relevance metrics for information retrieval

A large number of metrics are available to evaluate the quality of rank web pages in information retrieval (IR). These metrics can be classified in different groups as follows: Binary Relevance, Graded Relevance, Rank Correlation Coefficient, and User Oriented Measures. Each group of metrics has difference characteristics. However, metrics that contains in the same group have the similar charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000